The circuit shown below is a special-purpose analog computer, intended to solve a third-order differential equation of the form:

\[
\frac{d^3 x}{dt^3} + a \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + cx = f(t) \quad \text{or} \quad \dddot{x} + \ddot{a} \dot{x} + b \ddot{x} + cx = f(t)
\]

Given the component values shown, determine the numerical values of the three coefficients, \(a\), \(b\), and \(c\), and the input, \(f(t)\), for the differential equation it was designed to solve.

\[
\dddot{x} = -a \dddot{x} - b \dddot{x} - c \dot{x} + f(t)
\]

\[
\dddot{x} = -2 \dddot{x} + 3 \dddot{x} - 5 \dot{x} + 4
\]

\[
\therefore a = 2, \quad b = -3, \quad c = 5, \quad f(t) = 4
\]