
L.1: Introduction to MATLAB

L.1.1 Learning Objectives

This appendix provides a basic introduction to MATLAB. By following through it as a step-by-step

tutorial, you will learn to:

• use MATLAB in ‘calculator mode’;

• manipulate variables and use in-built MATLAB functions, e.g. cos, sin and plot.

• plot, annotate and copy graphs to a word processor;

• write simple programs (scripts) using loops and conditional statements;

• import data files;

Before leaving the lab, make sure you have accomplished these objectives – these skills will be

needed later on!

L.1.2 The MATLAB Command Line

Although its original inspiration was to provide easy access to matrix operations, MATLAB

(‘Matrix Laboratory’) can also be conveniently used for elementary calculations such as those

available on an electronic calculator, as we will see n this section. To begin a session on a PC,

click on the MATLAB desktop icon or use the Windows Start menu. The “MATLAB Command

Window” will eventually appear, where you can type instructions. Depending on the last user of

your PC, the interface may look somewhat differently from that shown below. To avoid later

confusion in these notes, do the following before continuing: From the Environment section of

the ribbon menu at the top of the MATLAB window, select Layout > Command Window Only.

The MATLAB window should now look something like this:

Type 1+2 and press the Enter key. The result is assigned to the generic variable ans and is printed

on the screen.

>> 1 + 2

ans =

 3

Not too difficult so far! You can quit MATLAB at any time by typing quit in the command

window.

L.1.2.1 Expressions

The usual arithmetical operators,

+ addition

- subtraction

* multiplication

/ division

^ power

can be used in expressions. The rules of precedence are ^ first, then / , * , - , and finally +.

Expressions in brackets are evaluated first. Where two operations rank equally in the order of

preference, then the calculation is performed from left to right. Blank spaces around the =, + and

- signs are optional. Spaces are used in these notes to improve readability, but you do not need to

type these spaces out when you try the examples for yourself.

Arithmetic expressions allow MATLAB to be used in ‘calculator mode’ as shown below, always

remembering to press enter after typing a command:

>> 100 / 5

ans =

 20

>> 100 / 5 / 2

ans =

 10

>> 100 + 5 / 2

ans =

 102.5000

>> (100 + 5) / 2

ans =

 52.5000

>> 100 + 5 ^ 2 / 2

ans =

 112.5000

>> 100 + 5 ^ (2 / 2)

ans =

 105

In all these examples, the result is assigned to the generic variable ans. Variables can be used in

expressions if they have previously been assigned a numerical value, as in the following example:

>> a = 10

a =

 10

>> b = 100

b =

 100

>> a * b

ans =

 1000

Variables can be reassigned:

>> a = 10

a =

 10

>> b = 100

b =

 100

>> a = a * b

a =

 1000

Use the who command to see a list of defined variables in alphabetical order. If you have been

typing the commands above, you will have three variables in memory so far: a, ans and b.

>> who

Your variables are:

a ans b

Type the name of one of these variables and press return to see its current value:

>> a

a =

 1000

>> b

b =

 100

Exercise L.1.1

Use MATLAB to evaluate the following:

(i) 3100 5+

(ii)
100 5

2 10

+

+

(iii)
97 5

3 100
2 20


 +

+

L.1.2.2 Editing previous commands

MATLAB responds to invalid expressions with a statement indicating what is wrong, as in the

example below. Here, we intended to sum two variables and then divide the result by 2, but we

mistakenly left out the closing right parenthesis.

>> b = 100

b =

 100

>> c = 5

c =

 5

>> (b+c/2

 (b+c/2

 ↑

Error: Invalid expression. When calling a function or indexing a

variable, use parentheses. Otherwise, check for mismatched

delimiters.

Did you mean:

>> (b+c/2)

Note that, even though it’s wrong this time, MATLAB also suggests a possible correction for the

error. If the suggestion is what you intended, then just press Enter to use it.

Also, at any time, you can use the cursor keys to:

• Use left / right arrow keys to edit text on the command line,

• Use the up / down arrow keys to scroll back to find previously entered commands, and

use them again.

 Exercise L.1.2

Use the arrow keys to edit and correct the previous command and find () 2b c+ . Check that the

answer makes sense.

L.1.2.3 Statements and variables

Statements have the generic form: variable = expression

The equals symbol implies the assignment of the expression to the variable. Several scalar

examples have already been given above, while a typical vector statement is:

>> x = [1 3]

x =

 1 3

Here the numbers 1 and 3 are assigned to elements of an array or vector (i.e. a list of numbers)

with the variable name x. The statement is executed immediately after the enter key is pressed.

The array x is automatically displayed after the statement is executed.

If the statement is followed by a semi-colon then the array is not displayed. Thus, now typing the

statement:

>> x = [1 4];

>>

would not result in any output on screen but the assignment will still have been carried out! You

can confirm this for the above example by checking the current value of the variable:

>> x

x =

 1 4

Although not often required in these notes, the semi-colon is useful when analyzing large arrays,

since it avoids having to wait for several pages of data to scroll down the screen. It is also useful

later on when writing your own functions, since you can avoid displaying unnecessary

intermediate results to the screen.

Array elements can be any valid MATLAB expression. For example:

>> x = [-1.3 3 ^ 2 (1 + 2 + 3) * 4 / 5]

x =

 -1.3000 9.0000 4.8000

Individual array elements can be referenced with indices inside parentheses. Thus, continuing the

previous example:

>> a = x(2)

a =

 9

>> x(1)

ans =

 -1.3000

>> -2*x(1)

ans =

 2.6000

>> x(5) = -2*x(1)

x =

 -1.3000 9.0000 4.8000 0 2.6000

In the last case, notice that the size of the array has been automatically increased to accommodate

the new element. Any undefined intervening elements, in this case x(4), are set to zero.

L.1.2.4 Elementary functions

All the common trigonometric and elementary mathematical functions are available for use in

expressions. A partial list includes:

sin(X) sine of the elements of X in radians, sind(X) for degrees

asin(X) arcsine of the elements of X in radians, asind(X) for degrees

cos(X) cosine of the elements of X in radians, cosd(X) for degrees

acos(X) arccosine of the elements of X in radians, acosd(X) for degrees

tan(X) tangent of the elements of X in radians, tand(X) for degrees

atan(X) arctangent of the elements of X in radians, atand(X) for degrees

abs(X) absolute value of the elements of X

sqrt(X) square root of the elements of X

imag(X) imaginary part of the elements of X

real(X) real part of the elements of X

log(X) natural logarithm of the elements of X

log10(X) base 10 logarithm of the elements of X

exp(X) exponential of the elements of X

sum(X) sum of the elements of X

length(X) length of X

These functions can be included in any expression. Note that the argument X of the function may

be a scalar or an array. In the latter case, the result is an array with element-by-element

correspondence to the elements of X, as can be seen in this example:

>> sin([0 1])

ans =

 0 0.8415

Variable names begin with a letter that may be followed by any number of letters and numbers

(including underscores), although MATLAB only remembers the first 31 characters. It is good

practice to use meaningful names, but not to use names that take too long to type. Since MATLAB

is case sensitive, the variables A and a are different. Note that all the predefined functions, such as

those listed above have lowercase names.

>> a = [0 1];

>> A = sin(a)

A =

 0 0.8415

>> B = cos(a)

B =

 1.0000 0.5403

The function clear removes a variable from the workspace:

>> clear A

>> who

Your variables are:

B a ans b c x

MATLAB has several predefined variables, including:

pi 

NaN not-a-number

Inf 

i 1−

j 1−

Although it is not recommended, these predefined variables can be overwritten. In the latter case,

they can be reset to their default values by using the clear function. For example:

>> pi

ans =

 3.1416

>> pi = 5

pi =

 5

Oops, this is probably a bad idea! To correct it, type the following:

>> clear pi

>> pi

ans =

 3.1416

The special variable called NaN results from undefined operations. For example:

>> 0 / 0

ans =

 NaN

Variables are stored in the workspace. The who function introduced above gives a list of the

variables in the workspace, while the whos function gives additional information such as the

number of elements in an array and the amount of memory occupied. Typing clear by itself

removes all variables from the workspace, while clear name1 name2 removes only the

variables named in the list.

All computations in MATLAB are performed in double precision. However, the screen output can

be displayed in several formats. The default contains four digits past the decimal point for non-

integers, as seen above. This can be changed using the format function as shown below:

>> format long

>> pi

ans =

 3.141592653589793

>> format short e

>> pi

ans =

 3.1416e+00

>> format long e

>> pi

ans =

 3.141592653589793e+00

Finally, return to the standard format:

>> format short

>> pi

ans =

 3.1416

L.1.2.5 Array operations

Arrays with the same number of elements can be added and subtracted. This means adding and

subtracting the corresponding elements in the arrays, as in the following example:

>> x = [1 2 3];

>> y = [4 5 6];

>> z = x + y

z =

 5 7 9

This is called an element-by-element operation. Such operations are useful for setting up tables of

values for graph plotting. Attempting to perform element-by-element operations on arrays

containing different numbers of elements will result in an error message.

Addition, subtraction, multiplication and division of an array by a scalar (an array with one

element) is allowed and results in the operation being carried out on every element of the array.

Thus, continuing the previous example:

>> w = z - 1

w =

 4 6 8

Larger arrays can be set up by using the colon notation to generate an array containing the numbers

from a starting value xstart, to a final value xfinal, with a specified increment xinc, by a

statement of the form: x = [xstart: xinc: xfinal]. The following example generates

a set of x and y values where ()siny x x= :

>> x = [0 : 0.1 : 0.5]

x =

 0 0.1000 0.2000 0.3000 0.4000 0.5000

>> y = x .* sin(x)

y =

 0 0.0100 0.0397 0.0887 0.1558 0.2397

When element-by-element operations involve multiplication, division or powers, the operator must

be preceded by a dot. Further examples are shown below. It is easy to forget this and encounter

an error!

>> A = [1 2 3];

>> B = [-6 7 8];

>> A .* B

ans =

 -6 14 24

>> A .^ 2

ans =

 1 4 9

The dot avoids ambiguities which would otherwise arise since, by default, MATLAB expects

vector-matrix analysis. (See below.)

L.1.2.6 Vectors and Matrices

In vector-matrix terms, it is not possible to multiply two row vectors, hence simply typing A*B

(without including the dot) results in an error:

>> A = [1 2 3];

>> B = [-6 7 8];

>> A * B

Error using *

Incorrect dimensions for matrix multiplication. Check that the

number of columns in the first matrix matches the number of rows

in the second matrix. To perform elementwise multiplication, use

'.*'.

However, a row vector can be multiplied by a column vector as follows. First of all, take the

transpose of B using the apostrophe symbol, to create a column vector:

>> C = B'

C =

 -6

 7

 8

In vector-matrix analysis, the order of the multiplication makes a difference to the solution:

>> A * C

ans =

 32

>> C * A

ans =

 -6 -12 -18

 7 14 21

 8 16 24

If you are not sure about the above results, then you might wish to read up about vectors and

matrices. Matrices can be defined by using a semi-colon to start each new row:

>> X = [1 2; 3 4; 5 6]

X =

 1 2

 3 4

 5 6

The transpose operator also works for matrices, as shown below:

>> X'

ans =

 1 3 5

 2 4 6

Some matrices can be defined using built-in MATLAB functions, as in the following examples:

>> ones(2,3)

ans =

 1 1 1

 1 1 1

>> zeros(2,2)

ans =

 0 0

 0 0

>> eye(3,3)

ans =

 1 0 0

 0 1 0

 0 0 1

The last example is called the identity matrix.

Exercise L.1.3

1. Experiment with the functions ones, zeros and eye to learn how they work. Use these

functions to create the following:

a. a 5 x 5 diagonal matrix with its diagonal elements all equal to 8

b. a 6 x 6 matrix with all of its elements equal to 3.5

2. Evaluate the following expressions, with: A = 100, B =5, C = 2, D = 10.

a.
A+B+C

2D

b. CA+B

c.
()
-1

B A-B

d.
AD

BC

3. Calculate the areas of circles of radius 1, 1.5, 2, 2.5, ..., 10m. Hint: to quickly solve all

nineteen cases at once, first define an array for the radius, e.g. rad = [1:0.5:10].

4. Calculate the areas of the rectangles whose lengths and widths are given in the following

table. Again, it is good practice to use arrays; for more advanced problems, this would save

the programmer a lot of time.

length 5 10 3 2

width 1 5 2 0.5

L.1.2.7 Graphics

Graphics play an important role in the design and analysis of engineering systems. The objective

of this section is to introduce the most basic x-y plotting capability of MATLAB. A figure window

is brought up automatically when the plot function is used. The user can switch from the figure

window to the command window using the mouse. Multiple plots may be open at one time: use

the figure command to open a new figure window.

Available plot functions include:

plot(x,y) plots the array x versus the array y

semilogx(x,y) plots the array x versus the vector y with log10 scale on the x-axis

semilogy(x,y) plots the array x versus the vector y with log10 scale on the y-axis

loglog(x,y) plots the array x versus the vector y with log10 scale on both axes

The axis scales and line types are automatically chosen. However, graphs may be customized using

the following functions:

title('text') puts ‘text’ at the top of the plot

xlabel('text') labels the x-axis with ‘text’

ylabel('text') labels the y-axis with ‘text’

text(p,q,'text','sc') puts ‘text’ at (p, q) in screen coordinates

subplot divides the graphics window

grid on / grid off draws grid lines on the current plot (turns on or off)

Screen co-ordinates define the lower left corner as (0.0, 0.0) and the upper right as (1.0, 1.0). Plots

may also be annotated by using the various menu options on the graph window. To illustrate some

of these functions, consider a plot of y = x sin(x) versus x as shown below.

>> x=[0:0.1:1.0];

>> y=x.*sin(x);

>> plot(x,y)

>> title('Example 1. Plot of y = x sin(x)')

>> xlabel('x')

>> ylabel('y')

>> grid on

Plots may include more than one line and line types may be specified in the plot statement. A

few examples are:

 - solid line -- dashed line : dotted line

 r red line b blue line k black line

Type help plot to see a full list of all the color and line type options. Normally, the plot

command clears any previous lines in the same figure window. However, hold on freezes the

figure and is useful for graphing multiple lines, as shown in the next example. Here, for brevity,

some of the commands are written on the same line, separated by a semicolon – you can either

type the example this way, or write the commands on separate lines as usual.

>> x=[0:0.1:1.0]; y1=x.*sin(x); y2=sin(x);

>> plot(x,y1,'--'); hold on; plot(x,y2,'-.')

>> grid on

>> title('Example 2. Plot of y1 and y2.')

>> xlabel('x'); ylabel('y1, y2')

>> text(0.1,.85,'y1 = x sin(x) ---')

>> text(0.1,0.75,'y2 = sin(x) -.-.-.')

The graph display can be divided into two, four or more smaller windows using the

subplot(m,n,p) function. The effect is to divide the graph display into an m by n grid of

smaller windows that are inexplicably numbered consecutively. This facility is illustrated in the

next example.

>> x=[0:0.1:1.0];

>> y1=x.*sin(x); y2=sin(x); y3=x.*cos(x); y4=cos(x);

>> subplot(2,2,1); plot(x,y1,'-')

>> grid on

>> title('Example 3. Plot of y1.')

>> xlabel('x'); ylabel('y1')

>> subplot(2,2,2); plot(x,y2,'--')

>> grid on

>> title('Example 3. Plot of y2.')

>> xlabel('x'); ylabel('y2')

>> subplot(2,2,3); plot(x,y3,':')

>> grid on

>> title('Example 3. Plot of y3.')

>> xlabel('x'); ylabel('y3')

>> subplot(2,2,4); plot(x,y4,'-.')

>> grid on

>> title('Example 4. Plot of y4.')

>> xlabel('x'); ylabel('y4')

>> subplot(2,2,4); plot(x,y4,'-.')

Point of Interest: This document was created using Microsoft Word. The MATLAB graphs were

copied to the clipboard using the MATLAB Figure Window Menu: Edit > Copy Figure, and then

pasted into the Word document.

Exercise L.1.4

Fahrenheit and Celsius temperatures are related by:

9
32

5
F C=  +

Plot a 2 1 array of graphs, with:

a. Fahrenheit vs. Celsius over the range 50 150C−   in the upper window, and

b. The inverse relationship over the range 50 250F−   in the lower window.

L.1.3 MATLAB Scripts

So far, all interaction with MATLAB has been at the command prompt labelled >>. At this prompt,

a statement is entered and executed when the enter key is pressed. This is the preferred way of

working only for short and non-repetitive jobs. However, the real power of MATLAB for

engineering calculations derives from its ability to execute a long sequence of commands stored

in a file. Such files, which are generally called m-files since the filename has the form

filename.m, may be either a function (see Appendix L.2) or a script.

Although MATLAB provides its own editor, both scripts and functions are ordinary ASCII text files

which can be created and edited using any text editor or word processor. A script is just a sequence

of statements and function calls that could also be used at the MATLAB command prompt. It is

invoked or ‘run’ by typing the filename (without the .m extension), and simply works through the

sequence of statements in the script automatically.

Suppose that it is required to plot the function ()siny t= for different values of the variable 

(the frequency). To do this, one may create a script called plotsine.m, as shown below. You

can create it by using the MATLAB Editor: select the New Script item on the MATLAB File Menu,

which is to be found at the top left of the MATLAB Command Window.

Type in the commands shown in the box below. Save your work to a file called plotsine. Note

that the MATLAB Editor will automatically add the .m file extension.

% This is a script to plot the function y = sin(omega*t).

%

% The value of omega (rad/s) must be in the workspace

% before invoking the script

t = [0: 0.01: 1]; % time

y = sin(omega*t); % function output

plot(t,y)

xlabel('Time (s)'); ylabel('y')

title('Plot of y = sin(omega*t)')

grid

Important! At this stage, the commands in the box above should be saved in a text

file. They should not be typed in the command window! This also applies to other

boxed text in these notes.

Scripts should be well documented with comments, so that their purpose and functionality can be

readily understood sometime after their creation. A comment begins with a %. Comments at the

beginning of a script form a header which can be displayed using the help function. This is

illustrated by the following example:

>> help plotsine

 This is a script to plot the function y = sin(omega*t).

 The value of omega (rad/s) must be in the workspace

 before invoking the script

If this help message does not appear, it may be because you have saved the file to a different

location from the current MATLAB workspace. For example, if you saved the file to

h:\myfiles\plotsine.m, then you must change to this directory using the cd command,

as follows, before continuing:

>> cd h:\myfiles

>> help plotsine

Next, type in a value for omega:

>> omega=10

omega =

 10

Finally enter the name of your script in the command window and press the key.

>> plotsine

If you wish to change the value of omega, you should ‘re-run’ the script to update the plot, as

shown below:

>> omega=20;

>> plotsine

MATLAB program outputs can be made more informative by using the disp function. The purpose

of this function is to display text or variable values on screen. Another useful function is format

compact, which reduces the number of spaces that MATLAB inserts. The normal display is

obtained by using the function format loose. Use of these functions is illustrated in the

following example. Create a script for the following boxed text and save as an m-file called
example.m

% Example Script

format compact

length = [5 10 3 2]; width = [1 5 2 0.5];

area = length.*width;

disp(' length width area')

disp(' m m sq m')

disp([length' width' area'])

The program is then run by typing its filename at the MATLAB command prompt:

>> example

 length width area

 m m sq m

 5.0000 1.0000 5.0000

 10.0000 5.0000 50.0000

 3.0000 2.0000 6.0000

 2.0000 0.5000 1.0000

Note that the elements of the array variables length, width and area have been printed out as

columns rather than rows. The apostrophe after the name changes the array from a row to a column,

i.e., vector transpose (see Section L.1.2.6 above). In fact, the expression [length' breadth'

area'] creates a matrix comprising these three columns.

L.1.3.1 For Loops

A for loop allows a statement, or group of statements, to be repeated a predetermined number of

times. For example:

>> for i=1:5; x(i)=i*2; end

>> x

x =

 2 4 6 8 10

In the above example, i*2 is assigned to the elements of the array x, where i = 1 to 5. Notice that

three statements have been written on one line, terminated by a semicolon to suppress printing

during the loop. The x at the end displays the final result. Note that each for statement must be

matched with an end to close the loop.

L.1.3.2 Conditional Statements

The MATLAB function if conditionally executes statements. The simple form is,

if expression

statements

else

statements

end

Both loops and conditional statements are most useful as part of a computer program – in other

words, as a way of controlling what happens in a MATLAB script.

The following program illustrates both loops and conditional statements. The example is rather

arbitrary, but study it carefully and experiment until you are confident about how these

programming constructs work. Store this as a script file example.m

Notice that use has been made of the MATLAB function size which returns the number of rows

and columns in the two-dimensional array x. In this program, m = 1 since x is a single row, while

n = 21. This saves the trouble of manually counting the number of elements in x.

% This is a script to identify membership of the open

% set {x:abs(x-3)<5} and the closed set {x:abs(x-3)<=5}

x = [-10:1:10]; [m,n] = size(x);

for i=1:n

 if abs(x(i) - 3) < 5

 yopen(i)=1;

 else

 yopen(i)=0;

 end

 if abs(x(i) - 3) <= 5

 yclosed(i)=1;

 else

 yclosed(i)=0;

 end

end

disp(' x yopen yclosed');

disp([x' yopen' yclosed'])

>> example

 x yopen yclosed

 -10 0 0

 -9 0 0

 -8 0 0

 -7 0 0

 -6 0 0

 -5 0 0

 -4 0 0

 -3 0 0

 -2 0 1

 -1 1 1

 0 1 1

 1 1 1

 2 1 1

 3 1 1

 4 1 1

 5 1 1

 6 1 1

 7 1 1

 8 0 1

 9 0 0

 10 0 0

1.3.3 External data

MATLAB can import data in a number of formats, including simple text, spreadsheet files, image

files, sound files and even movies. The load command is used to import ASCII text. Typically,

such a file contains data collected from an engineering device or other system of interest. For

example, use Windows Notepad or the MATLAB Editor to create the following file called

test.dat and save it to the PC hard drive or your own flash drive. Here, the first column might

be the time, while the second column is a measurement, say a voltage. The data file should contain

only numbers separated by commas or spaces:

10, 8

20, 11

30, 16

40, 15

50, 18

>> load test.dat

>> who

Your variables are:

i m n test x yclosed yopen

Note that the file extension .dat is required to load the data, but by default MATLAB then assigns

the data to a variable name that does not include the file extension. If you encounter a file-not-

found error, then use the cd command to make sure that the working directory contains the data

file in question. Alternatively, use the full path when loading the data; for example:

>> load h:\myfiles\data\test.dat

L.1.3.4 Matrix Elements

The test variable above is a 5 by 2 matrix, i.e., 5 rows and 2 columns. Individual elements of this

matrix may be extracted as illustrated below:

>> test(3,2)

ans =

 16

Recall that ans is the default variable name. As usual, you can assign the result to a named variable

by using the equals symbol. Also, the colon character is used to assign an entire row or column:

>> test(3,:)

ans =

 30 16

>> test(:,2)

ans =

 8

 11

 16

 15

 18

The final example plots the second column against the first column:

>> plot(test(:,1),test(:,2))

Exercise L.1.5

For this exercise, three sample data files are provided through the class website at

http://www.stuffle.website. Each file represents one particular experiment in a study of control of

the ventilation rate in an instrumented micro-climate test chamber. The data show how the

ventilation rate responds to a given voltage test signal. Download the three files

(Data_File_1.dat, Data_File_2.dat and Data_File_3.dat) to your working

folder or another storage location in your MATLAB path.

The first column of each data file is the ventilation rate (m3/hour), and the second column is the

input fan voltage expressed as a percentage. The data are sampled every 2 seconds (one sample in

each row of the file).

1. For Data_File_1.dat, write a script to load the data into MATLAB and generate a pair of

graphs similar to the figure shown below. (Note that the variable on the abscissa is the sample

number in each case.) You will need to use the commands: load, subplot, plot, title,

ylabel, xlabel and axis to do this. Use the help command for more information about

this new axis function. Can you figure out how to use it?

2. Use your script to very quickly plot the data from the other two files. If you have written an

appropriate script for the first task above, all you have to do is change the filename. This is one

advantage of using a script, as opposed to typing all the commands into the command window

each time. If you had typed out the commands out one by one, or used the menu system to

annotate the graph, then it would be much more work!

http://www.stuffle.website/

